p-Hydroxyphenacyl Phototriggers: The Reactive **Excited State of Phosphate Photorelease**

Peter G. Conrad, II,[‡] Richard S. Givens,^{*,‡} Bruno Hellrung, Cheruvallil S. Rajesh, Markus Ramseier, and Jakob Wirz*

> Institut für Physikalische Chemie der Universität Basel Klingelbergstrasse 80, CH-4056 Basel, Switzerland Department of Chemistry, University of Kansas Lawrence, Kansas 66045

> > Received March 31, 2000 Revised Manuscript Received July 11, 2000

Fast release of biological stimulants is needed to monitor physiological response in real time.¹ p-Hydroxyphenacyl (pHP) phototriggers meet this requirement. Moreover, the side products are biologically compatible and transparent to excitation wavelengths > 300 nm.² Knowledge of the release rate is essential to biophysical applications. Givens et al. identified a short-lived triplet state as the reactive excited state of pHP phosphates and carboxylates on the basis of quenching experiments.² In a recent study of pHP esters Zhang et al.^{3a} questioned that evidence and favored a singlet mechanism. Here, we prove that the reactive excited state of pHP diethyl phosphate (1) is a very short-lived triplet state and we provide direct evidence for adiabatic tautomerization of p-hydroxyacetophenone and its derivatives in the triplet state.

p-Hydroxyphenylacetic acid (2) is the only product detected by GC-MS after irradiation of 1 in wet acetonitrile (AN, H₂O \geq 5% by vol). Numerous products of higher molecular weight are formed in dry AN. Relative quantum yields of the photoreaction in different media were determined by the permanent bleaching of the absorption by 1 at 270 nm (pulsed laser excitation at 308 nm). Water (5%) accelerated the reaction about 5-fold, but saturation with air or addition of 0.5 mM piperylene slowed the conversion about 4-fold in dry AN. The absolute quantum yield in wet AN (5%) was determined as 0.94 (steady-state 313nm irradiation, azobenzene actinometry); it was reduced to 0.37 by addition of 10 mM piperylene. Still higher quencher concentrations were required to reduce the quantum yield in solutions containing more water.^{2c,3a}

Identification of the transients produced by nanosecond laser flash photolysis $(LFP)^4$ of **1** was aided by referring to phydroxyacetophenone (3) and *p*-methoxyacetophenone (4) as model compounds. Strong absorption was formed by LFP of 4 $(1 \times 10^{-4} \text{ M})$ in aqueous AN (50% H₂O, $\lambda_{max} \approx 395 \text{ nm})$ or AN (385 nm). Admission of air reduced the lifetime of this transient

[‡] University of Kansas.

from \sim 30 μ s to 80 ns in AN, and it was identified as the triplet state of 4, ³4, by energy transfer to naphthalene ($E_{\rm T} = 61$ kcal mol⁻¹),⁵ $k_{\rm et} \approx 1 \times 10^{10} \,\mathrm{M}^{-1} \,\mathrm{s}^{-1}$. Pump-probe spectroscopy of 4 in AN (248-nm excitation, 1 mJ per pulse, 0.8 ps pulse length) showed that intersystem crossing (ISC), ${}^{1}4 \rightarrow {}^{3}4$, is very fast, $k_{\rm ISC} = (3.1 \pm 0.2) \times 10^{11} \, {\rm s}^{-1}.$

Replacement of the methoxy group by an ionizable hydroxy group introduces new functionality (Scheme 1). The ionization constant of **3** is $pK_a(3) = 7.9 \pm 0.1.^6$ The equilibrium constant for the isomerization of **3** to its quinonoid enol tautomer **3'**, pK_E = 16.4, was calculated using density functional theory (DFT).⁷ A thermodynamic cycle then defines the acidity of enol 3' to be very high, $pK_a(3') = -8.5$.

Formation of ³**3** is equally fast in aqueous AN solvent mixtures $(k_{\rm ISC} = 2.7 \times 10^{11} \text{ s}^{-1}, \lambda_{\rm max} = 370 \text{ in dry AN}, 395 \text{ nm with } 50\%$ H₂O). Energy transfer from ³**3** to naphthalene was again observed.⁵ The transient is acidic,⁸ but does not ionize in dry AN. Adiabatic ionization, ${}^{3}3 \rightarrow {}^{3}3^{-} + H^{+}$, takes place in aqueous AN (50%) H₂O), $k_{ion} \approx 9 \times 10^6 \text{ s}^{-1}$, and is too fast for detection by LFP in water, $k_{ion} > 3 \times 10^7 \text{ s}^{-1}$. The spectra of ³**3** and ³**3**⁻ appear to be quite similar; the absorption maximum of ${}^{3}3^{-}$ is shifted to slightly longer wavelength (405 nm) and the weaker band in the visible, $\lambda_{\max} \approx 500$ nm, is more pronounced. In a second process, k = $1.9 \times 10^{6} \text{ s}^{-1}$, the intensity of the 405-nm band is reduced, and a new strong band appears at 350 nm.3b Excitation of the anion 3^{-} in aqueous NaOH (0.1 M) at 308 nm gave only the 405 and 500 nm bands, which shows that these are due to the triplet state of the anion, ${}^{3}3^{-}$.

Apparently, ${}^{3}\mathbf{3}^{-}$ is re-protonated to form the 350-nm transient in acidic solutions. The first-order rate coefficient for reprotonation in dilute aqueous acid ([HClO₄] = $3-10 \times 10^{-4}$ M) was proportional to acid concentration, $k_{\rm H^+} \approx 4 \times 10^{10} \, {\rm M^{-1} \ s^{-1}}$. Spectrographic traces of the equilibrated triplet-triplet absorptions (delay relative to excitation 200 ns) formed by excitation of 3 in aqueous buffer solutions at pH 7.1 (phosphate, I = 0.01 M), 5.32, 4.66, 4.38, 4.04 (acetate, I = 0.01 M), and 2.0 (HClO₄, 10^{-2} M) are shown in Figure 1. Factor analysis indicated that two components sufficed to reproduce all spectra within experimental accuracy. Fitting of a titration function to the loading coefficients gave $pK_a = 4.6 \pm 0.2$.

We attribute the protonated species observed at low pH (λ_{max} \approx 350 nm) to the quinonoid enol triplet, ³3'. Clearly, ³3' is an excited triplet—it is in equilibrium with ${}^{3}3^{-}$ and the lifetimes of both are equally reduced by oxygen-but its properties are distinctly different from those of ³3. The triplet energy of 3 ($E_{\rm T}$ = 70.5 kcal mol⁻¹,^{2c} DFT calculation:⁷ $E_{\rm T}$ = 69.5 kcal mol⁻¹) is well above that of naphthalene. On the other hand, the excitation energy of the quinonoid enol 3' is expected to be much lower

⁽¹⁾ Methods in Enzymology; Marriott, G., Ed.; Caged Compounds, Vol. 291; Academic Press: New York, 1998.
(2) (a) Givens, R. S.; Park, C.-H. Tetrahedron Lett. 1996, 37, 6259–6262.
(b) Park, C.-H.; Givens, R. S. J. Am. Chem. Soc. 1997, 119, 2453–2463. (c) Givens, R. S.; Weber, J. F. W.; Conrad, P. G.; Orosz, G.; Donahue, S. L.; Thayer, S. A. J. Am. Chem. Soc. 2000, 122, 2687–2697.

⁽a) Zhang, K.; S., Weber, J. P. W., Colinad, T. G., Olsz, G., Dohande, S. L.,
Thayer, S. A. J. Am. Chem. Soc. 2000, 122, 2687–2697.
(a) Zhang, K.; Corrie, J. E. T.; Munasinghe, V. R. N.; Wan, P. J. Am.
Chem. Soc. 1999, 121, 5625–5632. (b) Brousmiche, D. W.; Wan, P. J.
Photochem. Photobiol., A 2000, 130, 113–118.

⁽⁴⁾ Excimer laser operated on XeCl, 308 nm, ~100 mJ per pulse, pulse width 25 ns. Low concentrations of ketones 1, 3, and 4 were used to avoid radical formation by intermolecular hydrogen abstraction: Das, P. K.; Encinas, M. V.; Scaiano, J. C. J. Am. Chem. Soc. 1981, 103, 4154-4162. Canonica, S.; Hellrung, B.; Wirz, J. J. Phys. Chem. A 2000, 104, 1226-1232

⁽⁵⁾ Naphthalene concentrations ≤ 1 mM, selective excitation of the ketone at 351 nm (XeF excimer laser). The formation of triplet naphthalene was monitored at $\lambda_{max} = 415$ nm.

⁽⁶⁾ Spectrophotometric titration in tris(hydroxymethyl)amine/HCl buffer

⁽ionic strength I = 0.1 M). See also: Vandenbelt, J. M.; Henrich, C.;
Vandenberg, S. G. Anal. Chem. 1954, 26, 726-727.
(7) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.; Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T.; Petersson, G. A.;
Montgomery, J. A.; Raghavachari, K.; Al-Laham, M. A.; Zakrzewski, V. G.; Ortiz, J. V.; Foresman, J. B.; Cioslowski, J.; Stefanov, B. B.; Nanayakkara, A.; Challacombe, M.; Peng, C. Y.; Ayala, P. Y.; Chen, W.; Wong, M. W.; Andres, J. L.; Replogle, E. S.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Binkley, J. S.; Defres, D. J.; Baker, J.; Stewart, J. P.; Head-Gordon, M.; Gonzalez, C.; Pople, J. A. *Gaussian 94*, revision B.2; Gaussian, Inc.: Pittsburgh, PA, 1995. B3LYP functionals (unrestricted for the triplet states) with the 6-31G* basis set. Zero-point and thermal free-energy corrections were included. This method gives reliable values for keto-enol equilibria: Sklenák, S.; Apeloig, Y.; Rappoport, Z. J. Am. Chem. Soc. 1998, 120, 10359–10364.
(8) Bromophenol blue is protonated by ³3 at a diffusion-controlled rate

 $^{(\}lambda_{obs} = 600 \text{ nm})$, but the proton transfer is largely suppressed when ³3 is quenched by oxygen (1 atm).

^{*a*}Values for the lowest triplet states are given in brackets. Values relying on DFT calculations⁷ are in italic.

Figure 1. Transient absorption spectra obtained by LFP of **3** in water (10% AN) with various buffers.

(DFT calculation:⁷ $E_{\rm T} = 38.4 \text{ kcal mol}^{-1}$). Indeed, ³3' fails to sensitize naphthalene,⁵ $k_{\rm et} < 1 \times 10^8 \text{ M}^{-1} \text{ s}^{-1}$.

DFT calculations for the lowest triplet state correctly predict that enol ³**3'** is favored over phenol ³**3**, $pK_E^* = -7.0$, but the calculated value is too low. The triplet energy of **3**⁻ is $E_T(3^-) =$ 64.7 kcal mol^{-1,9} Ignoring entropy terms, the enolization constant of ³**3** may be calculated as $pK_E^* = pK_a(3) - pK_a^*(3') + \{E_T(3^-) - E_T(3)\}/(2.3RT) = 7.9-4.6 + \{64.7-70.5\}/1.36 \approx -1.0$, and the acidity constant of ³**3** as $pK_a^*(3) = pK_E^* + pK_a^*(3') \approx 3.6$ (Scheme 1). This is consistent with the observed rate of ionization, $k_{ion} \approx 9 \times 10^6 \text{ s}^{-1}$ in aqueous AN (50% H₂O): $K_a^*(3) = k_{ion}/k_{\text{H}^+}$. The observed fast ionization of ³**3**, followed by diffusional reprotonation of the resulting anion ³**3**⁻ to form enol ³**3'**, excludes a concerted, "intramolecular"^{3a} proton-transfer mechanism through water.

Yet another intermediate, $\lambda_{\text{max}} \approx 325$ nm, is formed by LFP of **3** in neutral aqueous solutions. The yield and the lifetime of this transient are not affected by oxygen, and its absorption spectrum is identical with that of the anion **3**⁻ in aqueous base, as noted by Wan and co-workers.³ The main precursor of **3**⁻ is the triplet anion ³**3**⁻: a resolved absorbance growth of **3**⁻ at 325 nm, $k = 5 \times 10^6 \text{ s}^{-1}$, matches the decay of ³**3**⁻ that is observed at $\lambda \ge 400$ nm in oxygen-saturated water. The subsequent decay of **3**⁻ is not first order in the absence of buffers, because pH increases as **3**⁻ is protonated to **3**.

LFP⁴ of diethyl phosphate **1** in carefully dried, degassed AN showed a strong transient absorbance, $\lambda_{max} = 395$ nm, which is assigned to ³**1**. The decay rate of ³**1** increased linearly with increasing concentration of **1** (0.1–1.5 mM, self-quenching rate constant $k_{sq} = 8.5 \times 10^8 \text{ M}^{-1} \text{ s}^{-1}$, intercept $k_0 = 2 \times 10^5 \text{ s}^{-1}$). Self-quenching is attributed to head-to-tail hydrogen abstraction,⁴ which leads to the radical-derived photoproducts found in dry AN. Energy transfer to naphthalene,⁵ $k_{et} = 7.8 \times 10^9 \text{ M}^{-1} \text{ s}^{-1}$, identified ³**1** as an excited triplet. The decay rate of ³**1** increased upon admission of air or oxygen, $k_q \approx 3 \times 10^9 \text{ M}^{-1} \text{ s}^{-1}$, and upon addition of piperylene (0–1.25 $\times 10^{-2} \text{ M}$), $k_q = 4.5 \times 10^9 \text{ M}^{-1} \text{ s}^{-1}$.

Figure 2. Pump-probe spectra of 1 in aqueous AN (1:1). The kinetic trace shows the temporal evolution of the loading coefficients of the first eigenspectrum obtained by factor analysis.

increasing water content, reaching $2.8 \times 10^7 \text{ s}^{-1}$ at 5% of water, and the transient escaped detection by nanosecond LFP at water contents exceeding 10%.

Excellent agreement between the effect of piperylene on the steady-state and time-resolved data establishes that the triplet state is the reactive excited state in the photorelease of diethyl phosphate from 1: the ratio of the quantum yields obtained with (10 mM) and without piperylene in 5% aqueous AN, $\phi^{q}/\phi^{0} = 0.39$ (vide supra), is equal, within the limits of error, to the corresponding ratio of the lifetimes of the transient intermediate ³1, $\tau^{q}/\tau^{0} = k_{obs}/(k_{obs} + k_{q}[q]) = 0.38$.

Addition of concentrated HClO₄ (1 -100×10^{-4} M) to AN resulted in a titration plot similar to that shown in Figure 1. Halfprotonation was reached at about 4 \times 10⁻³ M acid. The acidic form of the transient is attributed to the quinonoid enol triplet ³1'. Zhang et al. noted that the quantum yield of the photoreaction of *p*HP acetate drops in aqueous acid.^{3a} We observe a similar, if less pronounced drop in acidic aqueous (5%) AN, ϕ ([HClO₄]/ M): 0.94 (1×10^{-4}) , 0.90 (0.05), 0.84 (0.2), 0.74 (1.0). This drop is attributed to protonation of ${}^{3}\mathbf{1}^{-}$ to the neutral enol ${}^{3}\mathbf{1}'$, which is less prone to the release of diethyl phosphate. We could not perform quantum yield measurements in aqueous base, because 1 is quickly hydrolyzed in the ground state. The drop observed at high pH with pHP esters³ may be due to a low quantum yield of ISC. We found that excitation of 3^- gives low yields of ${}^{3}3^{-}$, especially at excitation wavelengths of less than 350 nm.

The sharp increase of the decay rate of ³**1** with increasing water content in AN is attributed to acceleration of heterolytic phosphate release by water. The spectral evolution seen by pump-probe spectroscopy of **1** in aqueous AN (1:1) is shown in Figure 2. Factor analysis of 79 spectra recorded with time delays of 5-2000 ps required 2 spectral components. Adequate fit to the loading factors was obtained with a dual exponential function, $k_1 = (3.8 \pm 0.2) \times 10^{11} \text{ s}^{-1} (^{1} \rightarrow ^{3}\mathbf{1})$ and $k_2 = (2.4 \pm 0.2) \times 10^{9} \text{ s}^{-1}$ (phosphate release). We believe that phosphate release occurs directly from the neutral ³**1**, but rate-determining ionization to ³**1**⁻ followed by rapid release cannot be excluded.

In summary, the photorelease of diethyl phosphate from p-hydroxyphenacyl diethyl phosphate (1) in neutral aqueous media proceeds via the triplet state, ³1, which is formed within a few ps and has a lifetime of 0.4 ns in 1:1 aqueous acetonitrile. The subsequent steps of the rearrangement and hydrolysis to p-hydroxyphenyl acetic acid (2) remain to be elucidated.

Acknowledgment. This work was supported by the Swiss National Science Foundation, Project No. 20-53919.98 (J.W.) and by NSF/OSR-9255223 (R.S.G.).

JA001134F